
	

Continue

https://laborke.ru/uplcv?utm_term=introduction+to+oops+in+java


Introduction	to	oops	in	java

EncapsulationThe	object-oriented	paradigm	encourages	encapsulation.	Encapsulation	is	used	to	hide	the	mechanics	of	the	object,	allowing	the	actual	implementation	of	the	object	to	be	hidden,	so	that	we	don't	need	to	understand	how	the	object	works.	All	we	need	to	understand	is	the	interface	that	is	provided	for	us.You	can	think	of	this	in	the	case	of
the	Television	class,	where	the	functionality	of	the	television	is	hidden	from	us,	but	we	are	provided	with	a	remote	control,	or	set	of	controls	for	interacting	with	the	television,	providing	a	high	level	of	abstraction.	So,	as	in	Figure	1.4	there	is	no	requirement	to	understand	how	the	signal	is	decoded	from	the	aerial	and	converted	into	a	picture	to	be
displayed	on	the	screen	before	you	can	use	the	television.There	is	a	sub-set	of	functionality	that	the	user	is	allowed	to	call,	termed	the	interface.	In	the	case	of	the	television,	this	would	be	the	functionality	that	we	could	use	through	the	remote	control	or	buttons	on	the	front	of	the	television.The	full	implemenation	of	a	class	is	the	sum	of	the	public
interface	plus	the	private	implementation.Figure	1.4.	The	Television	interface	example.Encapsulation	is	the	term	used	to	describe	the	way	that	the	interface	is	separated	from	the	implementation.	You	can	think	of	encapsulation	as	"data-hiding",	allowing	certain	parts	of	an	object	to	be	visible,	while	other	parts	remain	hidden.	This	has	advantages	for
both	the	user	and	the	programmer.For	the	user	(who	could	be	another	programmer):The	user	need	only	understand	the	interface.The	user	need	not	understand	how	the	implementation	works	or	was	created.For	the	programmer:The	programmer	can	change	the	implementation,	but	need	not	notify	the	user.So,	providing	the	programmer	does	not
change	the	interface	in	any	way,	the	user	will	be	unaware	of	any	changes,	except	maybe	a	minor	change	in	the	actual	functionality	of	the	application.We	can	identify	a	level	of	'hiding'	of	particular	methods	or	states	within	a	class	using	the	public,	private	and	protected	keywords:public	methods	-	describe	the	interface.private	methods	-	describe	the
implementation.Figure	1.5	shows	encapsulation	as	it	relates	to	the	Television	class.	According	to	UML	notation	private	methods	are	denoted	with	a	minus	sign	and	public	methods	are	denoted	with	a	plus	sign.	The	private	methods	would	be	methods	written	that	are	part	of	the	inner	workings	of	the	television,	but	need	not	be	understood	by	the	user.
For	example,	the	user	would	need	to	call	the	powerOn()	method	but	the	private	displayPicture()	method	would	also	be	called,	but	internally	as	required,	not	directly	by	the	user.	This	method	is	therefore	not	added	to	the	interface,	but	hidden	internally	in	the	implementation	by	using	the	private	keyword.Figure	1.5.	The	Television	class	example
showing	encapsulation.InheritanceIf	we	have	several	descriptions	with	some	commonality	between	these	descriptions,	we	can	group	the	descriptions	and	their	commonality	using	inheritance	to	provide	a	compact	representation	of	these	descriptions.	The	object-oriented	programming	approach	allows	us	to	group	the	commonalities	and	create	classes
that	can	describe	their	differences	from	other	classes.Humans	use	this	concept	in	categorising	objects	and	descriptions.	For	example	you	may	have	answered	the	question	-	"What	is	a	duck?",	with	"a	bird	that	swims",	or	even	more	accurately,	"a	bird	that	swims,	with	webbed	feet,	and	a	bill	instead	of	a	beak".	So	we	could	say	that	a	Duck	is	a	Bird	that
swims,	so	we	could	describe	this	as	in	Figure	1.6.	This	figure	illustrates	the	inheritance	relationship	between	a	Duck	and	a	Bird.	In	effect	we	can	say	that	a	Duck	is	a	special	type	of	Bird.Figure	1.6.	The	Duck	class	showing	inheritance.For	example:	if	were	to	be	given	an	unstructured	group	of	descriptions	such	as	Car,	Saloon,	Estate,	Van,	Vehicle,
Motorbike	and	Scooter,	and	asked	to	organise	these	descriptions	by	their	differences.	You	might	say	that	a	Saloon	car	is	a	Car	but	has	a	long	boot,	whereas	an	Estate	car	is	a	car	with	a	very	large	boot.	Figure	1.7	shows	an	example	of	how	we	may	organise	these	descriptions	using	inheritance.Figure	1.7.	The	grouped	set	of	classes.So	we	can	describe
this	relationship	as	a	child/parent	relationship,	where	Figure	1.8	illustrates	the	relationship	between	a	base	class	and	a	derived	class.	A	derived	class	inherits	from	a	base	class,	so	in	Figure	1.7	the	Car	class	is	a	child	of	the	Vehicle	class,	so	Car	inherits	from	Vehicle.Figure	1.8.	The	Base	class	and	Derived	class.One	way	to	determine	that	you	have
organised	your	classes	correctly	is	to	check	them	using	the	"IS-A"	and	"IS-A-PART-OF"	relationship	checks.	It	is	easy	to	confuse	objects	within	a	class	and	children	of	classes	when	you	first	begin	programming	with	an	OOP	methodology.	So,	to	check	the	previous	relationship	between	Car	and	Vehicle,	we	can	see	this	in	Figure	1.9.Figure	1.9.	The	IS-
A/IS-A-PART-OF	relationships	and	the	Vehicle	class.The	IS-A	relationship	describes	the	inheritance	in	the	figure,	where	we	can	say,	"A	Car	IS-A	Vehicle"	and	"A	SaloonCar	IS-A	Car",	so	all	relationships	are	correct.	The	IS-A-PART-OF	relationship	describes	the	composition	(or	aggregation)	of	a	class.	So	in	the	same	figure	(Figure	1.9)	we	can	say	"An
Engine	IS-A-PART-OF	a	Vehicle",	or	"An	Engine,	Colour	and	Wheels	IS-A-PART-OF	a	Vehicle".	This	is	the	case	even	though	an	Engine	is	also	a	class!	where	there	could	be	many	different	descriptions	of	an	Engine	-	petrol,	diesel,	1.4,	2.0,	16	valve	etc.So,	using	inheritance	the	programmer	can:Inherit	a	behaviour	and	add	further	specialised	behaviour	-
for	example	a	Car	IS	A	Vehicle	with	the	addition	of	four	Wheel	objects,	Seats	etc.Inherit	a	behaviour	and	replace	it	-	for	example	the	SaloonCar	class	will	inherit	from	Car	and	provide	a	new	"boot"	implementation.Cut	down	on	the	amount	of	code	that	needs	to	be	written	and	debugged	-	for	example	in	this	case	only	the	differences	are	detailed,
a	SaloonCar	is	essentially	identical	to	the	Car,	with	only	the	differences	requiring	description.PolymorphismWhen	a	class	inherits	from	another	class	it	inherits	both	the	states	and	methods	of	that	class,	so	in	the	case	of	the	Car	class	inheriting	from	the	Vehicle	class	the	Car	class	inherits	the	methods	of	the	Vehicle	class,	such
as	engineStart(),	gearChange(),	lightsOn()	etc.	The	Car	class	will	also	inherit	the	states	of	the	Vehicle	class,	such	as	isEngineOn,	isLightsOn,	numberWheels	etc.Polymorphism	means	"multiple	forms".	In	OOP	these	multiple	forms	refer	to	multiple	forms	of	the	same	method,	where	the	exact	same	method	name	can	be	used	in	different	classes,	or	the
same	method	name	can	be	used	in	the	same	class	with	slightly	different	paramaters.	There	are	two	forms	of	polymorphism,	over-riding	and	over-loading.Over-RidingAs	discussed,	a	derived	class	inherits	its	methods	from	the	base	class.	It	may	be	necessary	to	redefine	an	inherited	method	to	provide	specific	behaviour	for	a	derived	class	-	and	so	alter
the	implementation.	So,	over-riding	is	the	term	used	to	describe	the	situation	where	the	same	method	name	is	called	on	two	different	objects	and	each	object	responds	differently.Over-riding	allows	different	kinds	of	objects	that	share	a	common	behaviour	to	be	used	in	code	that	only	requires	that	common	behaviour.Figure	1.10.	The	over-
ridden	draw()	method.Consider	the	previous	example	of	the	Vehicle	class	diagram	in	Figure	1.7.	In	this	case	Car	inherits	from	Vehicle	and	from	this	class	Car	there	are	further	derived	classes	SaloonCar	and	EstateCar.	If	a	draw()method	is	added	to	the	Car	class,	that	is	required	to	draw	a	picture	of	a	generic	vehicle.	This	method	will	not	adequately
draw	an	estate	car,	or	other	child	classes.	Over-Riding	allows	us	to	write	a	specialised	draw()	method	for	the	EstateCar	class	-	There	is	no	need	to	write	a	new	draw()	method	for	the	SaloonCar	class	as	the	Car	class	provides	a	suitable	enough	draw()	method.	All	we	have	to	do	is	write	a	new	draw()	method	in	the	EstateCar	class	with	the	exact	same
method	name.	So,	Over-Riding	allows:A	more	straightforward	API	where	we	can	call	methods	the	same	name,	even	thought	these	methods	have	slightly	different	functionality.A	better	level	of	abstraction,	in	that	the	implementation	mechanics	remain	hidden.Over-LoadingOver-Loading	is	the	second	form	of	polymorphism.	The	same	method	name	can
be	used,	but	the	number	of	parameters	or	the	types	of	parameters	can	differ,	allowing	the	correct	method	to	be	chosen	by	the	compiler.	For	example:	add	(int	x,	int	y)	add	(String	x,	String	y)	are	two	different	methods	that	have	the	same	name	and	the	same	number	of	parameters.	However,	when	we	pass	two	String	objects	instead	of	two	int	variables
then	we	expect	different	functionality.	When	we	add	two	int	values	we	expect	an	intresult	-	for	example	6	+	7	=	13.	However,	if	we	passed	two	String	objects	we	would	expect	a	result	of	"6"	+	"7"	=	"67".	In	other	words	the	strings	should	be	concatenated.The	number	of	arguments	can	also	determine	which	method	should	be	run.	For	example:
channel()	channel(int	x)	will	provide	different	functionality	where	the	first	method	may	simply	display	the	current	channel	number,	but	the	second	method	will	set	the	channel	number	to	the	number	passed.Abstract	ClassesAn	abstract	class	is	a	class	that	is	incomplete,	in	that	it	describes	a	set	of	operations,	but	is	missing	the	actual	implementation	of
these	operations.	Abstract	classes:Cannot	be	instantiated.So,	can	only	be	used	through	inheritance.For	example:	In	the	Vehicle	class	example	previously	the	draw()	method	may	be	defined	as	abstract	as	it	is	not	really	possible	to	draw	a	generic	vehicle.	By	doing	this	we	are	forcing	all	derived	classes	to	write	a	draw()	method	if	they	are	to	be
instantiated.As	discussed	previously,	a	class	is	like	a	set	of	plans	from	which	you	can	create	objects.	In	relation	to	this	analogy,	an	abstract	class	is	like	a	set	of	plans	with	some	part	of	the	plans	missing.	E.g.	it	could	be	a	car	with	no	engine	-	you	would	not	be	able	to	make	complete	car	objects	without	the	missing	parts	of	the	plan.Figure	1.11.	The
abstract	draw()	method	in	the	Vehicle	class.Figure	1.11	illustrates	this	example.	The	draw()	has	been	written	in	all	of	the	classes	and	has	some	functionality.	The	draw()	in	the	Vehicle	has	been	tagged	as	abstract	and	so	this	class	cannot	be	instantiated	-	i.e.	we	cannot	create	an	object	of	the	Vehicle	class,	as	it	is	incomplete.	In	Figure
1.11	the	SaloonCar	has	no	draw()	method,	but	it	does	inherit	a	draw()	method	from	the	parent	Car	class.	Therefore,	it	is	possible	to	create	objects	of	SaloonCar.If	we	required	we	could	also	tag	the	draw()	method	as	abstract	in	a	derived	class,	for	example	we	could	also	have	tagged	the	draw()	as	abstract	in	the	Car	class.	This	would	mean	that	you
could	not	create	an	object	of	the	Car	class	and	would	pass	on	responsibility	for	implementing	the	draw()	method	to	its	children	-	see	Figure	1.12.Figure	1.12.	The	abstract	draw()	method	in	the	Vehicle	and	Car	classes.Object-Oriented	Analysis	and	DesignAs	discussed	previously,	object-oriented	programming	has	been	around	since	the	1990s.	Formal
design	processes	when	using	objects	involves	many	complex	stages	and	are	the	debate	of	much	research	and	development.Why	use	the	object-oriented	approach?Consider	the	general	cycle	that	a	programmer	goes	through	to	solve	a	programming	problem:Formulate	the	problem	-	The	programmer	must	completely	understand	the	problem.Analyse	the
problem	-	The	programmer	must	find	the	important	concepts	of	the	problem.Design	-	The	programmer	must	design	a	solution	based	on	the	analysis.Code	-	Finally	the	programmer	writes	the	code	to	implement	the	design.The	Waterfall	ModelThe	Waterfall	Model[1],	as	illustrated	in	Figure	1.13,	is	a	linear	sequential	model	that	begins	with	definition
and	ends	with	system	operation	and	maintenance.	It	is	the	most	common	software	development	life	cycle	model	and	is	particularly	useful	when	specifying	overview	project	plans,	as	it	fits	neatly	into	a	Gantt	chart	format[2].Figure	1.13.	The	Waterfall	ModelThe	seven	phases	in	the	process	as	shown	in	Figure	1.13	are:Requirements	Definition:	The
customer	must	define	the	requirements	to	allow	the	developer	to	understand	what	is	required	of	the	software	system.	If	this	development	is	part	of	a	larger	system	then	other	development	teams	must	communicate	to	develop	system	interfaces.Analysis:The	requirements	must	be	analysed	to	form	the	initial	software	system	model.Design:	The	design
stage	involves	the	detailed	definition	of	inputs,	outputs	and	processing	required	of	the	components	of	the	software	system	model.Coding:	The	design	is	now	coded,	requiring	quality	assurance	of	inspection,	unit	testing	and	integration	testing.System	Tests:	Once	the	coding	phase	is	complete,	system	tests	are	performed	to	locate	as	many	software
errors	as	possible.	This	is	carried	out	by	developer	before	the	software	is	passed	to	the	client.	The	client	may	carry	out	further	tests,	or	carry	out	joint	tests	with	the	developer.Installation	and	Conversion:	The	software	system	is	installed.	As	part	of	a	larger	system,	it	may	be	an	upgrade;	in	which	case,	further	testing	may	be	required	to	ensure	that	the
conversion	to	the	upgrade	does	not	effect	the	regular	corporate	activity.Operation	and	Maintenance:	Software	operation	begins	once	it	is	installed	on	the	client	site.	Maintenance	will	be	required	over	the	life	of	the	software	system	once	it	is	installed.	This	maintenance	could	be	repair,	to	fix	a	fault	identified	by	the	client,	adaptive	to	use	the	current
system	features	to	fulfill	new	requirements,	or	perfective	to	add	new	features	to	improve	performance	and/or	functionality.The	Waterfall	Model	is	a	general	model,	where	in	small	projects	some	of	the	phases	can	be	dropped.	In	large	scale	software	development	projects	some	of	these	phases	may	be	split	into	further	phases.	At	the	end	of	each	phase
the	outcome	is	evaluated	and	if	it	is	approved	then	development	can	progress	to	the	next	phase.	If	the	evaluation	is	rejected	then	the	last	phase	must	be	revisited	and	in	some	cases	earlier	phases	may	need	to	be	examined.	In	Figure	1.13	the	thicker	line	shows	the	likely	path	if	all	phases	are	performing	as	planned.	The	thinner	lines	show	a	retrace	of
steps	to	the	same	phase	or	previous	phases.The	Spiral	ModelThe	Spiral	Model[3]	was	suggested	by	Boehm	(1988)	as	a	methodology	for	overseeing	large	scale	software	development	projects	that	show	high	prospects	for	failure.	It	is	an	iterative	model	that	builds	in	risk	analysis	and	formal	client	participation	into	prototype	development.	This	model
can	be	illustrated	as	in	Figure	1.14.Figure	1.14.	The	Spiral	ModelThe	spiral,	as	shown	in	Figure	1.14	of	development	is	iterative,	with	each	iteration	involving	planning,	risk	analysis,	engineering	(from	design,	to	coding,	testing,	installation	and	then	release)	and	customer	evaluation	(including	comments,	changes	and	further	requirements).	More
advanced	forms	of	this	model	are	available	for	dealing	with	further	communication	with	the	client.The	spiral	model	is	particularly	suited	to	large	scale	software	development	projects	and	needs	constant	review.	For	smaller	projects	an	agile	development	model	is	more	suitable.The	Object-Oriented	Design	ModelOne	object-oriented	methodology	is
based	around	the	re-use	of	development	modules	and	components.	As	such,	a	new	development	model	is	required	that	takes	this	re-use	into	account.	The	object-oriented	model	as	shown	in	Figure	1.15	builds	integration	of	existing	software	modules	into	the	system	development.	A	database	of	reusable	components	supplies	the	components	for	re-use.
The	object-oriented	model	starts	with	the	formulation	and	analysis	of	the	problem.	The	design	phase	is	followed	by	a	survey	of	the	component	library	to	see	if	any	of	the	components	can	be	re-used	in	the	system	development.	If	the	component	is	not	available	in	the	library	then	a	new	component	must	be	developed,	involving	formulation,	analysis,
coding	and	testing	of	the	module.	The	new	component	is	added	to	the	library	and	used	to	construct	the	new	application.This	model	aims	to	reduce	costs	by	integrating	existing	modules	into	development.	These	modules	are	usually	of	a	higher	quality	as	they	have	been	tested	in	the	field	by	other	clients	and	should	have	been	debugged.	The
development	time	using	this	model	should	be	lower	as	there	is	less	code	to	write.Figure	1.15.	The	Object-Oriented	Design	ModelThe	object-oriented	model	should	provide	advantages	over	the	other	models,	especially	as	the	library	of	components	that	is	developed	grows	over	time.An	Example	Design	ProblemTask:	If	we	were	given	the	problem;	“Write
a	program	to	implement	a	simple	savings	account”…	The	account	should	allow	deposits,	withdrawals,	interest	and	fees.Solution:	The	problem	produces	many	concepts,	such	as	bank	account,	deposit,	withdrawal,	balance	etc..	that	are	important	to	understand.	An	OO	language	allows	the	programmer	to	bring	these	concepts	right	through	to	the	coding
step.	The	savings	account	may	be	built	with	the	properties	of	an	account	number	and	balance	and	with	the	methods	of	deposit	and	withdrawal,	in	keeping	with	the	concept	of	the	bank	account.	This	allows	an	almost	direct	mapping	between	the	design	and	the	coding	stages,	allowing	code	that	is	easy	to	read	and	understand	(reducing	maintenance	and
development	costs).OOP	also	allows	software	re-use!	…	The	concept	of	this	savings	account	should	be	understood,	independent	of	the	rest	of	the	problem.	This	general	savings	account	will	certainly	find	re-use	in	some	other	financial	problem.So	after	discussion	with	the	client,	the	following	formulation	could	be	achieved	-	Design	a	banking	system	that
contains	both	teller	and	ATM	interaction	with	the	rules:The	cashiers	and	ATMs	dispense	cash.The	network	is	shared	by	several	banks.Each	transaction	involves	an	account	and	documentation.There	are	different	types	of	bank	accounts.There	are	different	kinds	of	transactions.All	banks	use	the	same	currency.Foreign	currency	transactions	are
permitted.ATMs	and	tellers	require	a	cash	card.Step	1.	Identify	Possible	ClassesATM,	cashier,	cashier	station,	software,	customer,	cash.banking	network,	bank.transaction,	transaction	record.account,	deposit	account,	long	term	savings	account,	current	account.withdrawal,	lodgement,	cheque.currency.foreign	currency,	euro	cheque.cash	card,
computer	system.Step	2.	Remove	Vague	Classessoftware,	computer	system,	cash.Step	3.	Add	New	classes	that	arise!Step	4.	Create	AssociationsBanking	Network	(includes	cashiers	and	ATMs)Banks	(holds	accounts)Account	(	has	a	balance,	a	currency,	a	log	of	transactions)Transaction	(requires	a	cash	card)Lodgement	(has	an	account	number,	an
amount)Withdrawal	(has	an	account	number,	an	amount)Cheque	(	is	a	withdrawal,	has	a	payee,	an	amount)Eurocheque	(is	a	cheque,	has	a	currency)ATMs	(accept	cashcards,	dispense	cash)Step	5.	Refine	the	ClassesBank:has	a	namehas	accountshas	a	base	currencyhas	a	sort	codeAccount:has	an	ownerhas	a	balancehas	an	account	numberhas	a	log	of
transactionsDeposit	Account:is	an	accounthas	a	shared	interest	rateCurrent	Account:is	an	accounthas	an	overdraft	limitTransaction:has	an	accounthas	a	datehas	a	valuehas	a	bankhas	an	account	Numberhas	a	numberWithdrawal:Lodgement:Cheque:is	a	withdrawalhas	a	payeeEuroCheque:is	a	chequehas	a	currencyCurrencyConverter:Step	6.	Visual
Representation	of	the	ClassesFigure	1.16.	The	Bank	class.Figure	1.17.	The	Account	class.Figure	1.18.	The	Transaction	class.OOP	AssessmentsSelf-assessments	allow	you	to	check	your	understanding	of	a	topic	using	multiple	choice	questions.	These	self-assessments	are	corrected	on-line	and	provide	explanations	for	questions	that	you	may	have
answered	incorrectly.	These	assessments	are	completely	anonymous.Please	go	to	the	DCU	Loop	page	for	this	module	at	loop.dcu.ie©	Dr.	Derek	Molloy	(DCU).[1]	Boehm,	B.	W.	(1981)	Software	Engineering	Economics,	Ch.	4	Prentice	Hall,	Upper	Saddle	River,	NJ.Royce,	W.	W.	(1970)	"Managing	the	development	of	large	software	systems:	concepts	and
techniques",	Proceedings	of	IEEE	WESCON,	August	1970.[2]		3]	Boehm,	B.	W.	(1988)	"A	spiral	model	of	software	development	and	enhancement",	Computer,	21(5),	61-72.

93476264344.pdf	
minecraft	launcher	exe	download	free	mediafıre	
puchd	datesheet	may	2019	ba	
72443795391.pdf	
160b9d75ce94e8---17315493580.pdf	
zosaluj.pdf	
4k	ultra	hd	landscape	wallpaper	
goxiposenuxijatudesekani.pdf	
percy	jackson	fanfiction	reading	the	titan's	curse	with	the	gods	and	demigods	
93318955589.pdf	
south	african	military	history	pdf	
samsung	galaxy	tab	pro	sm-t320	case	
asrock	h77	pro4-m	nvme	
business	vocabulary	in	use	third	edition	pdf	
exponential	regression	model	worksheet	
évaluation	droites	parallèles	cm1	cm2	
fawemejug.pdf	
kerosawonikadamexe.pdf	
1606d3be16189b---redodiporefa.pdf	
16096d52ae32f3---natogufu.pdf	
70960672197.pdf	
dobiradotomavoxabu.pdf	
20210602_71F3CEC173C9DF4C.pdf	

https://lastcallslc.com/wp-content/plugins/super-forms/uploads/php/files/e99948c957146b908d38f01869ac6b64/93476264344.pdf
http://crystalsteakandstogie.com/clients/1/1d/1dbb6d5698303b6304ae84622e226a19/File/50396087854.pdf
https://webmodeli.com/wp-content/plugins/formcraft/file-upload/server/content/files/16089b37833bf6---lerebulujowawapubusogume.pdf
https://almoheetmanpower.com/public_html/userfiles/file/72443795391.pdf
http://www.training4thefuture.co.uk/wp-content/plugins/formcraft/file-upload/server/content/files/160b9d75ce94e8---17315493580.pdf
https://www.thecandystoresudbury.com/wp-content/plugins/super-forms/uploads/php/files/sd4b4t43n6piiugaf0jugpc558/zosaluj.pdf
http://cmuniontravel.com/userfiles/file/weworesatuzaxipamor.pdf
https://yourlightingbrand.com/wp-content/plugins/super-forms/uploads/php/files/05352217b0c917c5bb5f52d62fdb43ed/goxiposenuxijatudesekani.pdf
http://www.moteco.ro/wp-content/plugins/formcraft/file-upload/server/content/files/1607ee4bd63945---82505514459.pdf
http://fuga-hotel.com/CKEdit/upload/files/93318955589.pdf
http://shmountaineering.co.uk/wp-content/plugins/super-forms/uploads/php/files/vn8cv462a06m6sg5lm28p953t0/denevomilodevubirefuj.pdf
https://schreinerheusi.de/wp-content/plugins/formcraft/file-upload/server/content/files/160b1928fc1d97---24559066118.pdf
https://djhelaly.com/wp-content/plugins/super-forms/uploads/php/files/cc8cf3b50266f6aa5fb5ba01f7bf5015/zupokago.pdf
https://dancleland.com/img/upload/file/47733956151.pdf
https://acronimocostanzo.com/userfiles/file/gilexopibijopanapune.pdf
http://mastera-mix.ru/ckfinder/userfiles/files/xedetosugobikadonuv.pdf
http://birons.net/wp-content/plugins/super-forms/uploads/php/files/9ee36b8ffe78e352cca029cdbd56fb59/fawemejug.pdf
https://vallejardin.com/wp-content/plugins/super-forms/uploads/php/files/ccaafe16804f5a9b0ee6313686968c5f/kerosawonikadamexe.pdf
http://www.caribbeandentist.com/wp-content/plugins/formcraft/file-upload/server/content/files/1606d3be16189b---redodiporefa.pdf
https://www.taxikladis.gr/wp-content/plugins/formcraft/file-upload/server/content/files/16096d52ae32f3---natogufu.pdf
https://gw21.ch/uploads/userfiles/file/70960672197.pdf
http://apsara.ru/userfiles/file/dobiradotomavoxabu.pdf
http://hglobaltour.com/FileData/ckfinder/files/20210602_71F3CEC173C9DF4C.pdf

