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Density	of	chloroform	and	water

3	immiscible	liquids	of	different	densities	are	in	a	sealed	cylinder.	Chemicals	and	Solutions	Bis(2-chloroethyl)ether	Water	Mineral	oil	Materials	One	large	cylinder	with	the	above	mentioned	liquids	Procedure	This	is	a	display.	The	column	consists	of	3	liquid	layers	with	dyes.	The	cylinder	can	be	shaken	and	it	will	separate	over	time.	The	order	of	density
from	least	dense	to	most	dense	is:	Liquid/Solid	Density	in	g/mL	or	g/cm³	Bis(2-chloroethyl)	ether	1.456	Water	0.998	Mineral	Oil	0.8						Hint	It	takes	a	while	to	separate	fully.	If	you	shake	the	cylinder,	do	so	early	in	the	lecture.	References	Shakhashiri	Chemical	Demonstrations	Vol	3	pg	225,	1989,	The	University	of	Wisconsin	Press,	Madison	Wisconsin
Density	Column	2	Summary	Three	level	density	column	is	made	in	class.	Hazards	Iodine	can	cause	burns.	Chloroform	is	a	possible	carcinogen	Copper	Sulfate	is	an	irritant	Chemicals	and	Solutions	Ethyl	Acetate	Water	Chloroform	Iodine	CuSO₄	Materials	2	Ungraduated	Cylinders	deflagrating	spoon	Procedure	Two	Ungraduated	cylinders	will	be
provided	with	the	three	liquids	inside.	Liquid	Density	in	g/mL	or	g/cm³	Ethyl	acetate	0.897	Water	1.00	Chloroform	1.48	Using	the	deflagrating	spoon	Copper	Sulfate	is	added	to	the	aqueous	layer	(center)	and	gently	stirred.	Copper	sulfate	is	only	miscible	in	the	aqueous	layer	and	will	show	a	floating	blue	layer.	Iodine	is	then	added	to	the	other	cylinder
which	is	miscible	in	the	organic	layers.	An	orange	and	red	solution	will	be	separated	by	the	colorless	middle	aqueous	phase.	The	iodine	and	copper	sulfate	will	then	be	added	to	the	corresponding	cylinder	to	make	an	orange/blue/red	column.	Hint	Do	not	mix	the	organic	layers	as	they	are	miscible.	Disposal	Organic	layers	will	be	combined	and	sent	to
EH&S	as	1%iodine	99%	Ethyl	acetate/chloroform.	Aqueous	layer	will	be	sent	as	1%	CuSO₄	and	99%	water.	References	Share	PrintPDF		Back	to	lecture	demo	index	To	schedule	a	demonstration,	please	login	to	the	online	lecture	demonstration	scheduler.	Login	with	your	netid	in	the	form	of	"netid\"	Example:	netid\jim	This	article	references	80	other
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calculated.Page	5Small	molecule	compounds	which	form	colloidal	aggregates	in	solution	are	problematic	in	early	drug	discovery;	adsorption	of	the	target	protein	by	these	aggregates	can	lead	to	false	positives	in	inhibition	assays.	In	this	work,	we	probe	the	molecular	basis	of	this	inhibitory	mechanism	using	molecular	dynamics	simulations.
Specifically,	we	examine	in	aqueous	solution	the	adsorption	of	the	enzymes	β-lactamase	and	PTP1B	onto	aggregates	of	the	drug	miconazole.	In	accordance	with	experiment,	molecular	dynamics	simulations	observe	formation	of	miconazole	aggregates	as	well	as	subsequent	association	of	these	aggregates	with	β-lactamase	and	PTP1B.	When	complexed
with	aggregate,	the	proteins	do	not	exhibit	significant	alteration	in	protein	tertiary	structure	or	dynamics	on	the	microsecond	time	scale	of	the	simulations,	but	they	do	indicate	persistent	occlusion	of	the	protein	active	site	by	miconazole	molecules.	MD	simulations	further	suggest	this	occlusion	can	occur	via	surficial	interactions	of	protein	with
miconazole	but	also	potentially	by	envelopment	of	the	protein	by	miconazole.	The	heterogeneous	polarity	of	the	miconazole	aggregate	surface	seems	to	underpin	its	activity	as	an	invasive	and	nonspecific	inhibitory	agent.	A	deeper	understanding	of	these	protein/aggregate	systems	has	implications	not	only	for	drug	design	but	also	for	their	exploitation
as	tools	in	drug	delivery	and	analytical	biochemistry.Page	6Protein–protein	interactions	(PPIs)	are	attractive	targets	for	drug	design	because	of	their	essential	role	in	numerous	cellular	processes	and	disease	pathways.	However,	in	general,	PPIs	display	exposed	binding	pockets	at	the	interface,	and	as	such,	have	been	largely	unexploited	for
therapeutic	interventions	with	low-molecular	weight	compounds.	Here,	we	used	docking	and	various	rescoring	strategies	in	an	attempt	to	recover	PPI	inhibitors	from	a	set	of	active	and	inactive	molecules	for	11	targets	collected	in	ChEMBL	and	PubChem.	Our	focus	is	on	the	screening	power	of	the	various	developed	protocols	and	on	using	fast
approaches	so	as	to	be	able	to	apply	such	a	strategy	to	the	screening	of	ultralarge	libraries	in	the	future.	First,	we	docked	compounds	into	each	target	using	the	fast	“pscreen”	mode	of	the	structure-based	virtual	screening	(VS)	package	Surflex.	Subsequently,	the	docking	poses	were	postprocessed	to	derive	a	set	of	3D	topological	descriptors:	(i)	shape
similarity	and	(ii)	interaction	fingerprint	similarity	with	a	co-crystallized	inhibitor,	(iii)	solvent-accessible	surface	area,	and	(iv)	extent	of	deviation	from	the	geometric	center	of	a	reference	inhibitor.	The	derivatized	descriptors,	together	with	descriptor-scaled	scoring	functions,	were	utilized	to	investigate	possible	impacts	on	VS	performance	metrics.
Moreover,	four	standalone	scoring	functions,	RF-Score-VS	(machine-learning),	DLIGAND2	(knowledge-based),	Vinardo	(empirical),	and	X-SCORE	(empirical),	were	employed	to	rescore	the	PPI	compounds.	Collectively,	the	results	indicate	that	the	topological	scoring	algorithms	could	be	valuable	both	at	a	global	level,	with	up	to	79%	increase	in	areas
under	the	receiver	operating	characteristic	curve	for	some	targets,	and	in	early	stages,	with	up	to	a	4-fold	increase	in	enrichment	factors	at	1%	of	the	screened	collections.	Outstandingly,	DLIGAND2	emerged	as	the	best	scoring	function	on	this	data	set,	outperforming	all	rescoring	techniques	in	terms	of	VS	metrics.	The	described	methodology	could
help	in	the	rational	design	of	small-molecule	PPI	inhibitors	and	has	direct	applications	in	many	therapeutic	areas,	including	cancer,	CNS,	and	infectious	diseases	such	as	COVID-19.Page	7Although	molecular	dynamics	simulations	allow	for	the	study	of	interactions	among	virtually	all	biomolecular	entities,	metal	ions	still	pose	significant	challenges	in
achieving	an	accurate	structural	and	dynamical	description	of	many	biological	assemblies,	particularly	to	coarse-grained	(CG)	models.	Although	the	reduced	computational	cost	of	CG	methods	often	makes	them	the	technique	of	choice	for	the	study	of	large	biomolecular	systems,	the	parameterization	of	metal	ions	is	still	very	crude	or	not	available	for
the	vast	majority	of	CG	force	fields.	Here,	we	show	that	incorporating	statistical	data	retrieved	from	the	Protein	Data	Bank	(PDB)	to	set	specific	Lennard-Jones	interactions	can	produce	structurally	accurate	CG	molecular	dynamics	simulations	using	the	SIRAH	force	field.	We	provide	a	set	of	interaction	parameters	for	calcium,	magnesium,	and	zinc
ions,	which	cover	more	than	80%	of	the	metal-bound	structures	reported	in	the	PDB.	Simulations	performed	on	several	proteins	and	DNA	systems	show	that	it	is	possible	to	preclude	the	use	of	topological	constraints	by	modifying	specific	Lennard-Jones	interactions.Page	8Translocator	protein	(TSPO),	a	mitochondrial	membrane	protein,	has	been
extensively	studied,	and	its	role	is	still	debated	and	continues	to	be	enigmatic.	From	a	structural	perspective,	despite	availability	of	atomic	structures	from	different	species,	the	possible	oligomeric	state	and	its	3D	structure	remains	elusive.	In	the	present	study,	we	attempted	to	study	dynamics	of	TSPO	from	the	perspective	of	oligomerization.	In	this
aim,	we	examined	if	and	how	TSPO	monomers	could	assemble	to	form	a	dimer.	Accordingly,	we	performed	several	coarse-grained	molecular	dynamics	simulations	considering	two	different	initial	configurations,	one	with	a	pair	of	TSPO	monomers	distantly	placed	in	a	model	of	a	bilayer	composed	of	DMPC/cholesterol	mixture	and	the	other	with
preformed	dimer	models	with	different	starting	interactions.	We	identify	stable	TSPO	dimers	with	diverse	interfaces,	some	of	which	were	consistent	with	earlier	experimental	observations	on	putative	TSPO	oligomer	interfaces.	For	most	of	the	stable	ones,	interactions	between	aromatic	residues	were	significantly	overrepresented	in	diverse	oligomeric
organizations.	Interestingly,	we	identified	different	communication	pathways	that	involve	dimer	interfaces.	Additionally,	we	observed	that	cholesterol	molecules	in	close	interaction	with	the	TSPO	dimer	were	able	to	translocate	through	the	bilayer.	This	phenomenon	might	be	related	to	the	putative	mechanism	of	cholesterol	transport	and	could	be
increased	and	favored	by	the	dimer	formation.	Overall,	our	observations	shed	new	light	on	TSPO	oligomerization	and	bring	new	perspectives	on	its	dynamics,	as	well	its	interactions	with	protein	and	ligand	partners.Page	9Dopamine	(DA)	transporter	(DAT)	is	a	major	target	for	psychostimulant	drugs	of	abuse	such	as	cocaine	that	competitively	binds	to
DAT,	inhibits	DA	reuptake,	and	consequently	increases	synaptic	DA	levels.	In	addition	to	the	central	binding	site	inside	DAT,	the	available	experimental	evidence	suggests	the	existence	of	alternative	binding	sites	on	DAT,	but	detection	and	characterization	of	these	sites	are	challenging	by	experiments	alone.	Here,	we	integrate	multiple	computational
approaches	to	probe	the	potential	binding	sites	on	the	wild-type	Drosophila	melanogaster	DAT	and	identify	a	new	allosteric	site	that	displays	high	affinity	for	cocaine.	This	site	is	located	on	the	surface	of	DAT,	and	binding	of	cocaine	is	primarily	dominated	by	interactions	with	hydrophobic	residues	surrounding	the	site.	We	show	that	cocaine	binding	to
this	new	site	allosterically	reduces	the	binding	of	DA/cocaine	to	the	central	binding	pocket,	and	simultaneous	binding	of	two	cocaine	molecules	to	a	single	DAT	seems	infeasible.	Furthermore,	we	find	that	binding	of	cocaine	to	this	site	stabilizes	the	conformation	of	DAT	but	alters	the	conformational	population	and	thereby	reduces	the	accessibility	by
DA,	providing	molecular	insights	into	the	inhibitory	mechanism	of	cocaine.	In	addition,	our	results	indicate	that	the	conformations	induced	by	cocaine	binding	to	this	site	may	be	relevant	to	the	oligomerization	of	DAT,	highlighting	a	potential	role	of	this	new	site	in	modulating	the	function	of	DAT.Page	10G-Protein	coupled	receptors	(GPCRs)	are
involved	in	a	myriad	of	pathways	key	for	human	physiology	through	the	formation	of	complexes	with	intracellular	partners	such	as	G-proteins	and	arrestins	(Arrs).	However,	the	structural	and	dynamical	determinants	of	these	complexes	are	still	largely	unknown.	Herein,	we	developed	a	computational	big-data	pipeline	that	enables	the	structural
characterization	of	GPCR	complexes	with	no	available	structure.	This	pipeline	was	used	to	study	a	well-known	group	of	catecholamine	receptors,	the	human	dopamine	receptor	(DXR)	family	and	its	complexes,	producing	novel	insights	into	the	physiological	properties	of	these	important	drug	targets.	A	detailed	description	of	the	protein	interfaces	of	all
members	of	the	DXR	family	(D1R,	D2R,	D3R,	D4R,	and	D5R)	and	the	corresponding	protein	interfaces	of	their	binding	partners	(Arrs:	Arr2	and	Arr3;	G-proteins:	Gi1,	Gi2,	Gi3,	Go,	Gob,	Gq,	Gslo,	Gssh,	Gt2,	and	Gz)	was	generated.	To	produce	reliable	structures	of	the	DXR	family	in	complex	with	either	G-proteins	or	Arrs,	we	performed	homology
modeling	using	as	templates	the	structures	of	the	β2-adrenergic	receptor	(β2AR)	bound	to	Gs,	the	rhodopsin	bound	to	Gi,	and	the	recently	acquired	neurotensin	receptor-1	(NTSR1)	and	muscarinic	2	receptor	(M2R)	bound	to	arrestin	(Arr).	Among	others,	the	work	demonstrated	that	the	three	partner	groups,	Arrs	and	Gs-	and	Gi-proteins,	are	all
structurally	and	dynamically	distinct.	Additionally,	it	was	revealed	the	involvement	of	different	structural	motifs	in	G-protein	selective	coupling	between	D1-	and	D2-like	receptors.	Having	constructed	and	analyzed	50	models	involving	DXR,	this	work	represents	an	unprecedented	large-scale	analysis	of	GPCR-intracellular	partner	interface
determinants.	All	data	is	available	at	www.moreiralab.com/resources/dxr.Page	11Figure	S1,	multiple	alignment	of	SLN	mammalian	amino	acid	sequences;	Figures	S2–S11,	backbone	RMSD	and	per-residue	RMSF	of	SLN	deletion	constructs;	Figure	S12,	helical	content	of	SLN	deletion	constructs;	Figure	S13,	TM	domain	orientation	and	time-averaged
local	membrane	thickness	of	SLN	deletion	constructs;	Figure	S14,	distributions	of	the	φ/ψ	backbone	dihedral	angles	of	SLN	deletion	constructs;	Figures	S15–S18,	backbone	RMSD,	RMSF,	TM	insertion,	tilt	angle,	φ/ψ	torsion	angle	distribution,	mutual	correlation	analysis,	helical	content,	and	contacts	with	the	lipid	headgroups	of	three	SLN	deletion
constructs	simulated	with	the	CHARMM36	force	field;	Figures	S19–S22,	backbone	RMSD,	RMSF,	TM	insertion,	tilt	angle,	φ/ψ	torsion	angle	distribution,	mutual	correlation	analysis,	helical	content,	contacts	with	the	lipid	headgroups,	and	membrane	thickness	analysis	of	three	SLN	deletion	constructs	simulated	with	the	Amber	ff14SB	force	field	in	the
DMPC	lipid	bilayer;	and	Figure	S23,	backbone	RMSD	and	per-residue	RMSF	of	SLN	phosphorylated	at	residue	T5	(PDF)Page	12Page	13FMS-like	tyrosine	kinase	3	(FLT3)	is	mutated	in	∼30%	of	patients	that	suffer	from	acute	myeloid	leukemia	(AML).	In	about	25%	of	all	AML	patients,	in-frame	insertions	are	observed	in	the	sequence.	Most	of	those
insertions	are	internal	tandem	duplications	(ITDs)	of	a	sequence	from	the	protein.	The	characteristics	of	such	mutations	in	terms	of	length,	sequence,	and	location	were	hitherto	studied	in	different	populations,	but	not	in	a	comprehensive	mutation	database.	Here,	in-frame	insertions	into	the	FLT3	gene	were	extracted	from	the	Catalogue	of	Somatic
Mutations	in	Cancer	(COSMIC)	database.	These	were	analyzed	with	respect	to	the	length,	location,	and	sequence	of	the	mutations.	Furthermore,	characteristic	strings	(sequences)	of	different	lengths	were	identified.	Mutations	were	shown	to	occur	most	often	in	the	juxtamembrane	zipper	(JM-Z)	domain	of	FLT3,	followed	by	the	hinge	domain	and	first
tyrosine	kinase	domain	(TKD1),	upstream	of	the	phosphate-binding	loop	(P-loop).	Interestingly,	there	are	specific	hot	spot	residues	where	insertions	are	more	likely	to	occur.	The	insertions	vary	in	length	between	one	and	67	amino	acids,	with	the	largest	insertions	spanning	the	phosphate	binding	loop.	Insertions	that	occur	downstream	of	the	P-loop
are	shorter.	Our	analysis	further	shows	that	acidic	and	aromatic	residues	are	enriched	in	the	insertions.	Finally,	molecular	dynamics	simulations	were	run	for	FLT3	with	ITD	insertions	in	the	hinge	and	tyrosine	kinase	domains.	On	the	basis	of	the	findings,	a	mechanism	is	proposed	for	activation	by	ITDs,	according	to	which	there	is	no	direct	coupling
between	the	length	of	the	insertion	and	the	activity	of	the	mutated	protein.	The	effect	of	insertions	on	the	sensitivity	of	FLT3	to	kinase	inhibitors	is	discussed	based	on	our	findings.Page	14Molecular	dynamics	(MD)	simulation	has	become	a	powerful	tool	because	it	provides	a	time	series	of	protein	dynamics	at	high	temporal–spatial	resolution.
However,	the	accessible	timescales	of	MD	simulation	are	shorter	than	those	of	the	biologically	rare	events.	Generally,	long-time	MD	simulations	over	microseconds	are	required	to	detect	the	rare	events.	Therefore,	it	is	desirable	to	develop	rare-event-sampling	methods.	For	a	rare-event-sampling	method,	we	have	developed	parallel	cascade	selection
MD	(PaCS-MD).	PaCS-MD	generates	transition	pathways	from	a	given	source	structure	to	a	target	structure	by	repeating	short-time	MD	simulations.	The	key	point	in	PaCS-MD	is	how	to	select	reasonable	candidates	(protein	configurations)	with	high	potentials	to	make	transitions	toward	the	target	structure.	In	the	present	study,	based	on	principal
component	analysis	(PCA),	we	propose	PCA-based	PaCS-MD	to	detect	rare	events	of	collective	motions	of	a	given	protein.	Here,	the	PCA-based	PaCS-MD	is	composed	of	the	following	two	steps.	At	first,	as	a	preliminary	run,	PCA	is	performed	using	an	MD	trajectory	from	the	target	structure	to	define	a	principal	coordinate	(PC)	subspace	for	describing
the	collective	motions	of	interest.	PCA	provides	principal	modes	as	eigenvectors	to	project	a	protein	configuration	onto	the	PC	subspace.	Then,	as	a	production	run,	all	the	snapshots	of	short-time	MD	simulations	are	ranked	by	inner	products	(IPs),	where	an	IP	is	defined	between	a	snapshot	and	the	target	structure.	Then,	snapshots	with	higher	values
of	the	IP	are	selected	as	reasonable	candidates,	and	short-time	MD	simulations	are	independently	restarted	from	them.	By	referring	to	the	values	of	the	IP,	the	PCA-based	PaCS-MD	repeats	the	short-time	MD	simulations	from	the	reasonable	candidates	that	are	highly	correlated	with	the	target	structure.	As	a	demonstration,	we	applied	the	PCA-based
PaCS-MD	to	adenylate	kinase	and	detected	its	large-amplitude	(open–closed)	transition	with	a	nanosecond-order	computational	cost.Page	15Using	an	all-atom	explicit	water	model	and	replica	exchange	umbrella	sampling	simulations,	we	investigated	the	molecular	mechanisms	of	benzoic	acid	partitioning	into	two	model	lipid	bilayers.	The	first	was
formed	of	1,2-dimyristoyl-sn-glycero-3-phosphocholine	(DMPC)	lipids,	whereas	the	second	was	composed	of	an	equimolar	mixture	of	DMPC,	1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine,	palmitoylsphingomyelin,	and	cholesterol	to	constitute	a	blood–brain	barrier	(BBB)	mimetic	bilayer.	Comparative	analysis	of	benzoic	acid	partitioning	into	the
two	bilayers	has	revealed	qualitative	similarities.	Partitioning	into	the	DMPC	and	BBB	bilayers	is	thermodynamically	favorable	although	insertion	into	the	former	lowers	the	free	energy	of	benzoic	acid	by	approximately	an	additional	1	kcal	mol–1.	The	partitioning	energetics	for	the	two	bilayers	is	also	largely	similar	based	on	the	balance	of	benzoic	acid
interactions	with	apolar	fatty	acid	tails,	polar	lipid	headgroups,	and	water.	In	both	bilayers,	benzoic	acid	retains	a	considerable	number	of	residual	water	molecules	until	reaching	the	bilayer	midplane	where	it	experiences	nearly	complete	dehydration.	Upon	insertion	into	the	bilayers,	benzoic	acid	undergoes	several	rotations	primarily	determined	by
the	interactions	with	the	lipid	headgroups.	Nonetheless,	in	addition	to	the	depth	of	the	free	energy	minimum,	the	BBB	bilayer	differs	from	the	DMPC	counterpart	by	a	much	deeper	location	of	the	free	energy	minimum	and	the	appearance	of	a	high	free	energy	barrier	and	positioning	of	benzoic	acid	near	the	midplane.	Furthermore,	DMPC	and	BBB
bilayers	exhibit	different	structural	responses	to	benzoic	acid	insertion.	Taken	together,	the	BBB	mimetic	bilayer	is	preferable	for	an	accurate	description	of	benzoic	acid	partitioning.Page	16The	increased	activity	of	monoamine	oxidase	(MAO)	enzymes	may	lead	to	serious	consequences	since	they	reduce	the	level	of	neurotransmitters	and	are
associated	with	severe	neurodegenerative	diseases.	The	inhibition	of	this	enzyme,	especially	the	B	isoform,	plays	a	vital	role	in	the	treatment	of	Parkinson’s	disease	(PD).	This	study	is	aimed	to	find	novel	human	MAO-B	(hMAO-B)	selective	inhibitors.	A	total	of	256.750	compounds	from	the	Otava	small	molecules	database	were	virtually	screened
gradually	by	employing	several	screening	techniques	for	this	purpose.	Initially,	a	high-throughput	virtual	screening	(HTVS)	method	was	employed,	and	10%	of	the	molecules	having	high	docking	scores	were	subjected	to	binary	QSAR	models	for	further	screening	of	their	therapeutic	activities	against	PD,	Alzheimer’s	disease	(AD),	and	depression	as
well	as	for	their	toxicity	and	pharmacokinetic	properties.	Then,	enzyme	selectivity	of	the	ligands	towards	the	A	and	B	forms	that	passed	through	all	the	filters	were	studied	using	the	induced-fit	docking	method	and	molecular	dynamics	simulations.	At	the	end	of	this	exhaustive	research,	we	identified	two	hit	molecules	ligand3	(Otava	ID:	7131545)	and
ligand4	(Otava	ID:	7566820).	Based	on	the	in	vitro	results,	these	two	compounds	(ligands3	and	4)	together	with	ligands	1	and	2	found	in	our	previous	study	showed	activity	at	the	nanomolar	(nM)	level,	and	the	results	indicated	that	these	four	ligands	inhibit	hMAO-B	better	than	the	FDA-approved	drug	selegiline.Page	17Small,	colloidally	aggregating
molecules	(SCAMs)	are	the	most	common	source	of	false	positives	in	high-throughput	screening	(HTS)	campaigns.	Although	SCAMs	can	be	experimentally	detected	and	suppressed	by	the	addition	of	detergent	in	the	assay	buffer,	detergent	sensitivity	is	not	routinely	monitored	in	HTS.	Computational	methods	are	thus	needed	to	flag	potential	SCAMs
during	HTS	triage.	In	this	study,	we	have	developed	and	rigorously	validated	quantitative	structure-interference	relationship	(QSIR)	models	of	detergent-sensitive	aggregation	in	several	HTS	campaigns	under	various	assay	conditions	and	screening	concentrations.	In	particular,	we	have	modeled	detergent-sensitive	aggregation	in	an	AmpC	β-
lactamase	assay,	the	preferred	HTS	counter-screen	for	aggregation,	as	well	as	in	another	assay	that	measures	cruzain	inhibition.	Our	models	increase	the	accuracy	of	aggregation	prediction	by	∼53%	in	the	β-lactamase	assay	and	by	∼46%	in	the	cruzain	assay	compared	to	previously	published	methods.	We	also	discuss	the	importance	of	both	assay
conditions	and	screening	concentrations	in	the	development	of	QSIR	models	for	various	interference	mechanisms	besides	aggregation.	The	models	developed	in	this	study	are	publicly	available	for	fast	prediction	within	the	SCAM	detective	web	application	(	.Page	18G-protein-coupled	receptors	(GPCRs)	transmit	signals	into	the	cell	in	response	to
ligand	binding	at	its	extracellular	domain,	which	is	characterized	by	the	coupling	of	agonist-induced	receptor	conformational	change	to	guanine	nucleotide	(GDP)	exchange	with	guanosine	triphosphate	on	a	heterotrimeric	(αβγ)	guanine	nucleotide-binding	protein	(G-protein),	leading	to	the	activation	of	the	G-protein.	The	signal	transduction
mechanisms	have	been	widely	researched	in	vivo	and	in	silico.	However,	coordinated	communication	from	stimulating	ligands	to	the	bound	GDP	still	remains	elusive.	In	the	present	study,	we	used	microsecond	(μS)	molecular	dynamic	(MD)	simulations	to	directly	probe	the	communication	from	the	β2	adrenergic	receptor	(β2AR)	with	an	agonist	or	an
antagonist	or	no	ligand	to	GDP	bound	to	the	open	conformation	of	the	Gα	protein.	Molecular	mechanism-general	Born	surface	area	calculation	results	indicated	either	the	agonist	or	the	antagonist	destabilized	the	binding	between	the	receptor	and	the	G-protein	but	the	agonist	caused	a	higher	level	of	destabilization	than	the	antagonist.	This	is
consistent	with	the	role	of	agonist	in	the	activation	of	the	G-protein.	Interestingly,	while	GDP	remained	bound	with	the	Gα-protein	for	the	two	inactive	systems	(antagonist-bound	and	apo	form),	GDP	dissociated	from	the	open	conformation	of	the	Gα	protein	for	the	agonist	activated	system.	Data	obtained	from	MD	simulations	indicated	that	the
receptor	and	the	Gα	subunit	play	a	big	role	in	coordinated	communication	and	nucleotide	exchange.	Based	on	residue	interaction	network	analysis,	we	observed	that	engagement	of	agonist-bound	β2AR	with	an	α5	helix	of	Gα	is	essential	for	the	GDP	release	and	the	residues	in	the	phosphate-binding	loop,	α1	helix,	and	α5	helix	play	very	important	roles
in	the	GDP	release.	The	insights	on	GPCR–G-protein	communication	will	facilitate	the	rational	design	of	agonists	and	antagonists	that	target	both	active	and	inactive	GPCR	binding	pockets,	leading	to	more	precise	drugs.Page	19LEARN	ABOUT	THESE	METRICSArticle	Views	are	the	COUNTER-compliant	sum	of	full	text	article	downloads	since
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large	amount	of	pharmacological,	genomic,	and	network	knowledge	data	provides	new	challenges	and	opportunities	for	drug	discovery	and	development.	Identification	of	real	small-molecule	drug	(SM)–miRNA	associations	is	not	only	important	in	the	development	of	effective	drug	repositioning	but	also	crucial	in	providing	a	better	understanding	of
the	mechanisms	by	which	small-molecule	drugs	achieve	the	purpose	of	treating	diseases	by	regulating	miRNA	expression.	However,	challenges	remain	in	accurately	determining	potential	associations	between	small	molecules	and	miRNAs	using	information	from	multiomics	data.	In	this	study,	we	adopted	a	novel	framework	called	SMAJL	to	improve
the	prediction	of	small	molecule–miRNA	associations	with	joint	learning.	First,	we	use	enhancing	matrix	completions	to	obtain	the	network	knowledge	of	small	molecule–miRNA	associations.	Then,	we	extract	the	information	of	small-molecule	fingerprints	and	miRNA	sequences	into	feature	vectors	to	obtain	small-molecule	structure	and	miRNA
sequence	information.	Finally,	we	incorporate	small-molecule	structure	information,	miRNA	sequence	data,	and	heterogeneous	network	knowledge	into	a	joint	learning	model	based	on	a	Restricted	Boltzmann	Machine	(RBM)	to	predict	association	scores.	To	validate	the	effectiveness	of	our	method,	the	SMAJL	model	is	compared	with	four	state-of-the-
art	methods	in	terms	of	5-fold	cross-validation.	The	results	demonstrate	that	the	AUC	and	AUPRC	of	the	SMAJL	are	obviously	superior	to	those	of	other	comparison	methods.	The	SMAJL	model	also	achieved	great	results	in	terms	of	robustness	and	case	studies,	further	demonstrating	its	strong	predictive	power.Page	21Page	22Page	23Page	24
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